P.R.GOVERNMENT COLLEGE (A), KAKINADA III B.Sc. MATHEMATICS - VI Semester (w.e.f.2018-19) Course (Cluster VIII (B)-1) Advanced Numerical Analysis

Total hours of teaching: 45 @ 3 hours/ week

Total credits: 3

Objective:

- > To find the integration and solutions for ordinary differential equations using numerical methods.
- > To find the best fitted curve for the given data.

.....

Unit – I Curve Fitting:

(8 hrs)

Least - Squares curve fitting procedures, fitting a straight line, nonlinear curve fitting, Curve fitting by a sum of exponentials. NWIE III

UNIT-II Numerical Differentiation:

(6 hrs)

Derivatives using Newton's forward difference formula, Newton's backward difference formula, Derivatives using central difference formula, stirling's interpolation formula, Newton's divided difference formula, Maximum and minimum values of a tabulated function.

MINIA LOLD

UNIT-III Numerical Integration:

(10 hrs)

General quadrature formula on errors, Trapozoidal rule, Simpson's 1/3 - rule, Simpson's 3/8 - rule, and Weddle's rules, Euler - Maclaurin Formula of summation and quadrature, The Euler transformation. Act III 100

UNIT – IV Solutions of simultaneous Linear Systems of Equations:

(11 hrs)

Solution of linear systems - Direct methods, Matrix inversion method, Gaussian elimination methods, Gauss-Jordan Method ,Method of factorization, Solution of Tridiagonal Systems,. Iterative methods. Jacobi's method, Gauss- siedal method.

UNIT-V Numerical solution of ordinary differential equations:

(10 hrs)

Introduction, Solution by Taylor's Series, Picard's method of successive approximations, Euler's method, Modified Euler's method, Runge – Kutta methods. THY SUR, IT

Reference Books:

- Numerical Analysis by S.S.Sastry, published by Prentice Hall India (Latest
- Numerical Analysis by G. Sankar Rao, published by New Age International Publishers, 2. New Hyderabad.
- 3. Finite Differences and Numerical Analysis by H.C Saxena published by S. Chand and Company, Pvt. Ltd., New Delhi.
- 4. Numerical methods for scientific and engineering computation by M.K.Jain, S.R.K.Iyengar, R.K. Jain.

BLUE PRINT FOR QUESTION PAPER PATTERN

SEMESTER-VI

PAPER VIII (B) 1, CLUSTER VIII (B) 1

UNIT	TOPIC	V.S.A.Q	S.A.Q(including choice)	E.Q(including choice)	Total Marks
T	Curve Fitting	01	02	01	19
I	Numerical Differentiation	01	01	01	14
III	Numerical Integration	02	02	019	20
IV	Solution of Linear System of Equations	02	03	01 4)	25
V	Numerical Solutions for ODE	02	02	02	28
TOTAL		08 5	10	06	106

E.Q = Essay questions (8 marks) S.A.Q = Short answer questions (5 marks) V.S.A.Q = Very Short answer questions (1 mark)

Essay questions : 4x8M = 32Short answer questions : 5x6M = 30Very Short answer questions : 8x1M = 08

P.R.Govt.College (Autonomous), Kakinada III B.Sc Examination - VI Semester - Mathematics (Cluster - VIII (B)-1) Advanced Numerical Analysis PAPER-VIII (B) -1 MODEL PAPER (w.e.f. 2018-19)

Time: 3 hours

Max marks=70M

PART-I

Answer all the questions. Each question carries 1 mark

8X1=8M

Write the normal equations for fitting a straight line

2. Write the formula for $\frac{dy}{dx}$ at $x = x_1$.

3. Write Simpson's 3/8 formula.

4. Write Boole's rule Ealer Transformation Formula

5. Write the formula of y1, using Taylor's method. What is the family for A-1 for a non singular matrix A.

6. In factorization method if A=LU, then write L.

7. Write Euler's formula for yn

Write the formula for Runge-Kutta method of second order

PART-II

Answer any three questions from each section

6X5=30 M

SECTION -A

Find the least square line y=a+bx for the data.

Xi	1	2	3	4	5
Yi	14	27	40	55	68

10. Find the curve of best fit of the type $y=ae^{bx}$ to the following data by the method of least squares

	X	1	5	7	9	12
	у	10	15	12	15	21
ı.	C 11 ·					

11. From the following table, find x correct to 4 decimal plances for which y is minimum and find this value of y

X	0.60	0.65	0.70	0.77
Y	0.6221	0.6155	0.70	0.75
		0.0133	0.6138	0.6170

12. Evaluate $\int_{0}^{1} x^{3} dx$ with five sub-intervals by Trapezoidal rule.

Evaluate the $\int_{0}^{5.2} \log x dx$ using Weddle's Rule.

SECTION - B

-14. Solve the equation x+y+z=6; 3x+3y+4z=20; 2x+y+3z=13 using Gaussian elimination method.

Solve the following equations by Gauss-Seidel method 8x - 3y + 2z = 20; 4x + 11y - z = 33; 6x + 3y + 12z = 35;

16. Solve the equations $2x_1 + x_2 + x_3 = 10$: $3x_1 + 2x_2 + 3x_3 = 18$:

 $x_1 + 4x_2 + 9x_3 = 16$: Using Matrix inversion method.

77. Solve $\frac{dy}{dx} = x + y$, y(0) = 1, using Picard's method upto 3 approximations.

18. Using Euler's method solve for y at x=2 from $\frac{dy}{dx} = 3x^2 + 1$, y(1) = 2, taking step size h=0.25

PART-III

Answer any four questions by choosing at least one question from each section. 4X8=32

SECTION-C

19. Fit a second degree polynomial to the following data by the method of least squares:

X	0	1	2	3	4
Y	1	1.8	1.3	2.5	6.3

20. Form the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x=1.5

	1.5			3.0		4.0
Y	3.375	7.0	13.625	24.0	38.875	59.0

21.Derive Newton's general quadrature formula.

SECTION-D

- 22. Solve the equations 2x+3y+z=9; x+2y+3z=6; 3x+y+2z=8 by factorization method.
- 23: Given $\frac{dy}{dx} = -xy^2$, y(0) = 2, compute y(0.2) in steps of 0.1 using modified

Euler's method.

13

1

24. Obtain the values of y at x=0.1,0.2 using Runge-kutta method of fourth order for the differential equation $y^1 + y = 0$, y(0) = 1.